### Local Economic Spillovers from Water Trade

Billy Ferguson Zane Kashner

UC Berkeley ARE Stanford GSB

October 31, 2025

- Water markets greatly improve the efficient allocation of scarce resources (Rafey 2023).



- Water markets improve efficiency (Rafey 2023)
- Local harms in selling communities (Wheeler et al. 2024)



- Water markets improve efficiency (Rafey 2023)
- Local harms in selling communities (Wheeler et al. 2024)

"As water moves from one region to another, the economic consequences will flow. Where the water goes, the economy will follow."

Community member from Pretty Pine, NSW (Sullivan 2019)



- Water markets improve efficiency (Rafey 2023)
- Local harms in selling communities (Wheeler et al. 2024)

"If you grow a crop you use local contractors, local providers of chemicals, seed, agronomy, accountants, you contribute to wages and that money goes around [but] if you just take your money from trading water, that money doesn't go around."

Irrigator from Pretty Pine, NSW (Sullivan 2019)



- Water markets improve efficiency (Rafey 2023)
- Local harms in selling communities (Wheeler et al. 2024)

"I'm not sure the Imperial Valley is a big believer in water markets," Shields said. "We're a big believer in protecting our community."

Manager of Imperial Irrigation District, CA (Smolens 2023)



- Water markets improve efficiency (Rafey 2023)
- Local harms in selling communities (Wheeler et al. 2024)

"From a community point of view, perhaps we need to consider maintaining water in the regions, but then as a business person would I like to be restricted to sell my water only within my region when I might be able to earn double for it downstream? It's about having your cake and eating it too."

**Business Chamber VP from Pretty Pine, NSW** (Sullivan 2019)



# This Paper

"From a community point of view, perhaps we need to consider maintaining water in the regions, but then as a business person would I like to be restricted to sell my water only within my region when I might be able to earn double for it downstream? It's about having your cake and eating it too" (Sullivan 2019)

#### **Research Questions**

- 1. What are the local economic spillovers from water trade?
- 2. How large are community impacts relative to gains from trade?
- 3. How do we better **design markets** with this in mind?

### This Paper: Approach

#### - Event Study: DiD-IV Approach

- Use MDB's water management reform as a natural experiment for water trade.
- Instrument for propensity to trade with soil characteristics.
- Estimate local economic impacts of trade.

#### - Communal Hedonic Value of Water: Residential Choice Model

- Leverage migration flows to estimate residential choice utility.
- Allow households to have direct preferences over water in the community.

#### - Private WTP for water: Agricultural Production Functions

- Simple Cobb-Douglas production function estimation.
- Back out MWTP for water.

### Policy and Market Design

- Combine private and communal WTP for water.
- Explore how correlation and heterogeneity affect potential policy instruments.
- Focus on a mechanism to achieve Pareto-gains.

#### Contributions

- Distributional Consequences of Trade: Apselund (2025), Calliendo et al. (2019), Fajgelbaum and Khandelwal (2014), Autor et al. (2013), Kovak (2013).
  - Environmental input market where distribution is first-order.
  - Integrate event-study, migration model, and production to analyze tradeoffs.
- Place-Based Policy: Slattery (2025), Kashner (2025), Kline and Moretti (2013), Glaeser and Gottlieb (2008).
  - Place-based policy under exchange where losers are more pronounced.
- Water Market Design: Akhundjanov et al. (2025), Ferguson (2025), Ferguson and Milgrom (2024), Hagerty (2025), Rafey (2023), Regnacq et al. (2016), Colby (1990), Hanak (1990).
  - Study key bottleneck to policy reform in world's largest, most active water market.
  - First market-wide analysis of distributional impacts.

### Roadmap

- 1. Water in Australia
- 2. Data and Descriptive Statistics
- 3. Local Economic Effects: Event Studies
- 4. Communal Value of Water: Residential Choice
- 5. Market Value of Water: Agricultural Production
- 6. Market Design and Counterfactuals

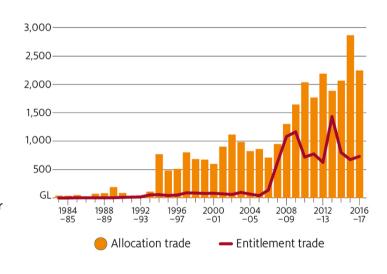
### Roadmap

- 1. Water in Australia
- 2. Data and Descriptive Statistics
- 3. Local Economic Effects: Event Studies
- 4. Communal Value of Water: Residential Choice
- 5. Market Value of Water: Agricultural Production
- 6. Market Design and Counterfactuals

# Water in Australia: Murray-Darling Basin



- Largest basin and most productive agriculture.
- Dry growing season ⇒ irrigation dependent.
- Millenium Drought ⇒ political will.
- Water Act of 2007
  - Overhauled water management.
  - Clarified water rights.
  - Removed trade barriers.


# Water in Australia: Murray-Darling Basin

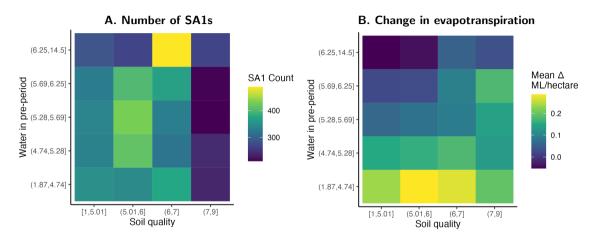


- Largest basin and most productive agriculture.
- Dry growing season  $\Rightarrow$  irrigation dependent.
- Millenium Drought ⇒ political will.
- Water Act of 2007
  - Overhauled water management.
  - Clarified water rights.
  - Removed trade barriers.
- Most active and valuable water market.
  - 60% of farms have traded.
  - **\$1.9 billion gains** from trade (Rafey 2023).

## Use Water Act as Natural Experiment

- Ideal Experiment:
   Random permanent change
   is water rights.
- Natural Experiment:
  Water Act of 2007's
  liberalization of trade ⇒
  ≈ 20x increase in
  permanent transfers.
- Intuition: Perisistent factor misallocation unlocked by policy.



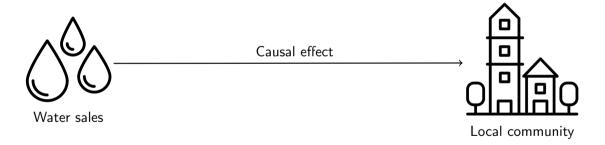

### Roadmap

- 1. Water in Australia
- 2. Data and Descriptive Statistics
- 3. Local Economic Effects: Event Studies
- 4. Communal Value of Water: Residential Choice
- 5. Market Value of Water: Agricultural Production
- 6. Market Design and Counterfactuals

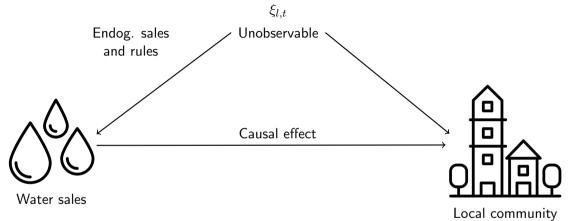
#### Data

- **Water usage:** SA1 × Year (2001-2020)
  - Australia's Terresetrial Ecosystem Research Network (TERN)
  - Combine applied ET measures from Sentinel-2 and Landsat satellite data
  - Measures average evapotranspiration (30m-level) in mm/day.
- Land Characteristics: SA1 in 2001
  - Soil and Landscape Grid of Australia at 90m pixel
  - Soil pH and depth for 161k points (observed and predicted with ML)
- Census every 5 years: SA1  $\times$  Year (1996-2021)
  - Population, rent, mortgage, wages, jobs.
  - Migration flows between region.
- **Property Sales:** Property × Transactions (1995-2024)
  - All transactions and parcels in NSW ( $\approx 1/3$  MDB's population)
- **Other**: voting by poll station, mortality causes, deaths by location.

#### Ex-ante factor misallocation




Note: Soil quality is from a harmonized land capability mapping in [Adams & Engert 2023]. Average change in SA1 evapotranspiration (ML/hectare). Distribution Geography SoilGeography


### Roadmap

- 1. Water in Australia
- 2. Data and Descriptive Statistics
- 3. Local Economic Effects: Event Studies
- 4. Communal Value of Water: Residential Choice
- 5. Market Value of Water: Agricultural Production
- 6. Market Design and Counterfactuals

# Event-Study Design: IV Intuition FirstStage



# Event-Study Design: IV Intuition FirstStage



# Event-Study Design: IV Intuition FirstStage $\xi_{l,t}$ Endog. sales Unobservable and rules Causal effect Water sales Local community Farmers' value of water

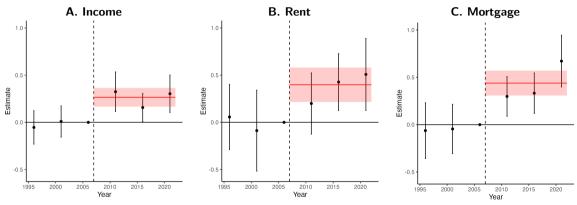
Soil quality

# Event-Study Design: Instrumented Diff-in-Diff

#### DiD IV approach

$$\log(Y_{l,t}) - \log(Y_{l,'06}) = \tau_t \Delta \hat{W}_l + \phi_{d,t} + \varepsilon_{l,t}$$

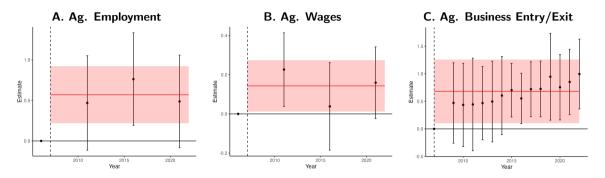
 $Y_{l,t}$ : Outcomes in location l in year t (household income, rent, mortgage, and population)


 $\Delta \hat{W}_l$  : Average difference  $(\overline{W}_{post} - \overline{W}_{pre})$  in evapotranspiration per hectare

IV w/ natural soil characteristics (pH,  $pH^2$ ,  $\sqrt{Depth}$ )

 $au_t$ : Effect of change in water

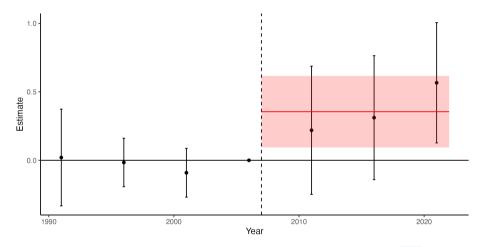
 $\phi_{d,t}$ : Water-district fixed effect


## Event Study Results for Local Economic Indicators



Notes: Effect of permanent increase in ET/hectare on income, rent, and mortgage. ≈5,300 SA1 obs. each year.




### Agricultural Labor Market Effects



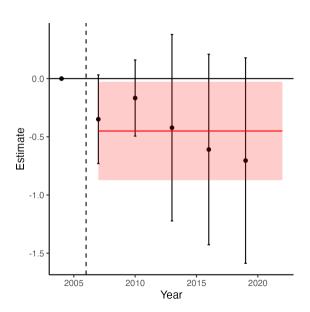
Note: Effect of permanent increase in ET/hectare on agricultural employment, wages, and entry/exit.  $\approx$ 4,300 SA1 obs. each year.



# Populations respond more slowly to shift in water



Notes: Effect of permanent increase in ET/hectare on SA1 population.


Water losers shift politically



## Water losers shift politically

- **Labor:** Campaign on MDB plan regulation and overhaul
- Liberal-National: "Continue to advance the Plan as it stands"
- Outcome is Log(Labor Vote Share)
- Polling data SA2  $\times$  year (2004-2019)

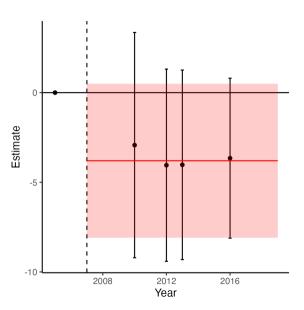




### Deaths of Despair

# Water fights

Much of the world is desperately short of fresh water. Are future water wars inevitable?


BY NANCY MACDONALD JULY 6, 2009

Every few days, another farmer commits suicide in Australia's Murray-Darling Basin, the agricultural heartland. Many, according to Australian evolutionary biologist Tim Flannery, haven't had any water in almost four years—in places, the allocation of irrigation water has been cut to zero. Their farms have dried up, leaving a dusty, wind-whipped scrubland. Cattle bellow from hunger through the night. "Despair is an enormous problem," says Flannery. "There is no sign the situation will ever improve." Government has compiled a suicide watch list.

### Deaths of Despair

- Suicide from decline of farming towns
- Deaths of despair rate (SA2 × year)
- Years: 03-07, 08-12, 10-14, 11-15, 14-18  $\operatorname{asinh}(D_{lt}) \operatorname{asinh}(D_{l.2005})$
- At mean, 34% reduction in deaths.
- Noisy, but suggestive evidence.





## Summary of evidence

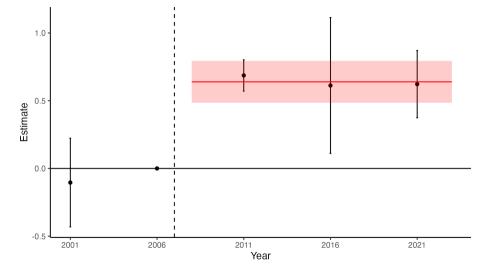
- Effects on income, housing costs, employment, politics, and deaths of despair.
- **Design goal:** trade-off community impacts with productive reallocation.
- **Problem:** how do we summarize the community impacts of trade?
- Want the community's willingness-to-pay to keep water in town.
- **Strategy:** Residential choice model with hedonic estimation of WTP for water.
- To motivate this approach, we demonstrate the impact of water trade on home prices.

# What happens to home prices?

#### Resale IV approach Data

$$\log(p_{l,t}) = \tau_t \Delta \hat{W}_l + \phi_i + \gamma_{d,t} + \varepsilon_{l,t}$$

 $Y_{l,t}$ : Outcomes in location l in year t (household income, rent, mortgage, and population)


 $\Delta \hat{W}_l$  : Instrumented average difference in evapotranspiration per hectare

 $\tau_i$ : Effect of change in water

 $\phi_i$ : Unit fixed effects

 $\gamma_{d,t}$ : Water-district fixed effects

# What happens to home prices? OLSFig Table



 ${\it Notes:}\ {\it Effect}\ {\it of}\ {\it permanent}\ {\it increase}\ {\it in}\ {\it ET/hectare}\ {\it on}\ {\it home}\ {\it resales}\ {\it in}\ {\it NSW}.$ 

### Roadmap

- 1. Water in Australia
- 2. Data and Descriptive Statistics
- 3. Local Economic Effects: Event Studies
- 4. Communal Value of Water: Residential Choice
- 5. Market Value of Water: Agricultural Production
- 6. Market Design and Counterfactuals

#### Estimate Communal Value of Water: Residential Choice Model

- Missing (public goods) market for community to pay farmers to keep water.
- How much is a community willing to pay?
- Estimate the hedonic value for water in the community with a residential choice model.
  - Map local water, housing price, income, and migration chance to welfare (in \$)
  - Households have different preference for locations
  - Heterogeneous preference for water & price (by density)
  - Income elasticities
  - Estimate using SA2  $\rightarrow$  SA1 migration flows.

# Model of Residential Choice: Utility

- **Model:** Extension of Bayer et al. (2007) with locational substitution patterns.
- **Utility:** Representative i from origin o(i,t) SA2 gets utilty from moving to SA1 d in t.

$$u_{i,d,t}^{o(i,t)} = \underbrace{\gamma_d^{o(i,t)}}_{\text{location prefs.}} - \underbrace{\alpha_d \log(p_{j,t})}_{\text{housing price}} + \underbrace{\omega_d W_{d,t}}_{\text{water prefs.}} + \underbrace{\theta \log(I_{d,t})}_{\text{income}} + \underbrace{\eta_{wd(d),t}}_{\text{district-year FE}} + \underbrace{\xi_{d,t}^{o(i)}}_{\text{unobs.}} + \underbrace{\varepsilon_{i,d,t}}_{\text{T1EV}}$$

- **Heterogeneity:** Price and water elasticites vary in pre-intervention density  $D_d$ 

$$\alpha_d = \alpha_0 + \alpha_1 \log(D_d)$$
  $\omega_d = \omega_0 + \omega_1 \log(D_d)$ 

# Model of Residential Choice: Utility

- **Model:** Extension of Bayer et al. (2007) with locational substitution patterns.
- **Utility:** Representative i from origin o(i,t) SA2 gets utilty from moving to SA1 d in t.

$$u_{i,d,t}^{o(i,t)} = \underbrace{\gamma_d^{o(i,t)}}_{\text{location prefs.}} - \underbrace{\alpha_d \log(p_{j,t})}_{\text{housing price}} + \underbrace{\omega_d W_{d,t}}_{\text{water prefs.}} + \underbrace{\theta \log(I_{d,t})}_{\text{income}} + \underbrace{\eta_{wd(d),t}}_{\text{district-year FE}} + \underbrace{\xi_{d,t}^{o(i)}}_{\text{unobs.}} + \underbrace{\varepsilon_{i,d,t}}_{\text{T1EV}}$$

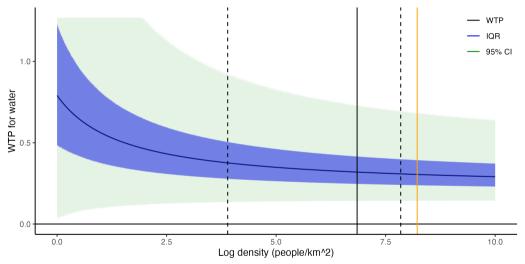
- **Heterogeneity:** Price and water elasticites vary in pre-intervention density  $D_d$ 

$$\alpha_d = \alpha_0 + \alpha_1 \log(D_d)$$
  $\omega_d = \omega_0 + \omega_1 \log(D_d)$ 

- Caveat: Currently, crude management of zero-shares (Gandhi et al. 2023).

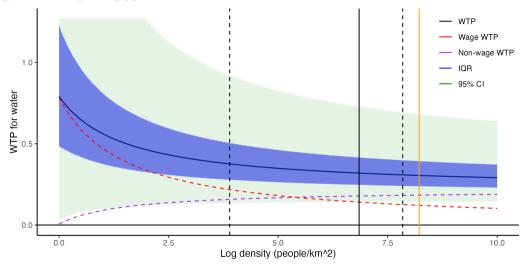
#### Model of Residential Choice: Estimation

- **Strategy:** Berry-style inversion and apply instrumental variables GMM.


| Variable          | Instruments                                                       | Intuition              |
|-------------------|-------------------------------------------------------------------|------------------------|
| Price: $p_{d,t}$  | Death count $\times$ prev.period exposure to elderly F-stat: 42.2 | Supply Shifter         |
| Water: $W_{d,t}$  | Immutable soil chars. $\times$ year F-stat: 204.7                 | Exog. Productivity     |
| Income: $I_{d,t}$ | Bartik instrument<br>F-stat: 60.2                                 | Sectoral wage shifters |

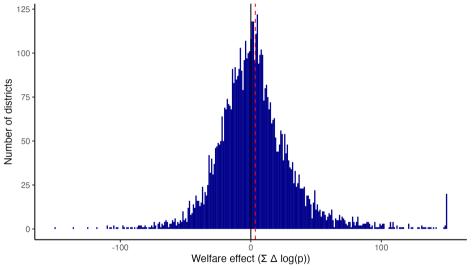
- **Data:** Repeated cross-section of SA2  $\rightarrow$  SA1 migration flows form 2006-2021.

### Results: Residential demand estimation


|                   | Main         |              |           | OLS       |
|-------------------|--------------|--------------|-----------|-----------|
| Price: $\alpha_0$ | -0.248**     | -0.207       | -0.224    | 0.039***  |
|                   | (0.110)      | (0.130)      | (0.248)   | (0.007)   |
| Price: $\alpha_1$ | -0.165***    | -0.218***    | 0.133     | -0.002    |
|                   | (0.049)      | (0.046)      | (0.146)   | (0.005)   |
| Water: $\omega_0$ | 0.006        | -0.254       | -0.360*** | -0.362*** |
|                   | (0.321)      | (0.337)      | (0.086)   | (0.078)   |
| Water: $\omega_1$ | 0.130***     | 0.096***     | 0.022*    | 0.020*    |
|                   | (0.020)      | (0.021)      | (0.012)   | (0.011)   |
| Wage: $	heta$     | 0.691***     | 0.201***     | 0.176***  | 0.129***  |
|                   | (0.132)      | (0.033)      | (0.057)   | (0.011)   |
| Instr.: Price     | <b>√</b>     | ✓            | ✓         |           |
| Instr.: Water     | $\checkmark$ | $\checkmark$ |           |           |
| Instr.: Wage      | $\checkmark$ |              |           |           |

#### Local WTP for Water




Note: WTP is utility-equivalent percentage home price decrease per 1 SD water increase. Pecuniary refers to the wage effect. Dashed vertical lines are the 25th and 75th percentile of locations, the black line is the mean, and the orange line is the median resident's location. Inference using Gaussian multiplier bootstrap.  $\frac{23}{34}$ 

#### Local WTP for Water



Note: WTP is utility-equivalent percentage home price decrease per 1 SD water increase. Pecuniary refers to the wage effect. Dashed vertical lines are the 25th and 75th percentile of locations, the black line is the mean, and the orange line is the median resident's location. Inference using Gaussian multiplier bootstrap. 24/34

# First-order Aggregate Welfare Effect on Communities



Note: A first order approximation for the average welfare effect is equivalent to a 1.1% decrease in home prices per person per year or \$250 million per year. 100 is equivalent to 1,000 households paying 10% less.

### Roadmap

- 1. Water in Australia
- 2. Data and Descriptive Statistics
- 3. Local Economic Effects: Event Studies
- 4. Communal Value of Water: Residential Choice
- 5. Market Value of Water: Agricultural Production
- 6. Market Design and Counterfactuals

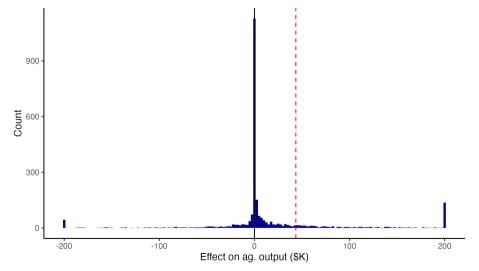
# Agricultural WTP for Water

- Need to understand value of productive reallocation.
- For now: Estimate simple model using Census of Agriculture from 2005-2020.
- **Production Function:** Cobb-Douglas for crop types  $s \in \{\text{annual}, \text{dairy}, \text{perennial}\}.$

$$\underbrace{Y_{l,t,s}}_{\text{productivity}} = \underbrace{\exp(\omega_{l,t,s})}_{\text{productivity}} \underbrace{W_{l,t,s}^{\alpha_W^s}}_{\text{water}} \underbrace{L_{l,t,s}^{\alpha_L^s}}_{\text{labor}}$$

- Can back out marginal WTP from parameters (Rafey 2023).
- For future: Serious treatment of functional form, productivity, and inframarginal WTP.

### Estimate Agricultural Production


- **Strategy:** Instrument for changes in water and labor from 2005-2020.

$$\underbrace{\Delta \log(Y_{l,s})}_{\text{output (\$)}} = \underbrace{\alpha_W^s \Delta \log(W_{l,s})}_{\text{water}} + \underbrace{\alpha_L^s \Delta \log(L_{l,s})}_{\text{labor}} + \underbrace{\phi_{d(l),s}}_{\text{district fe}} + \varepsilon_{l,s}$$

- Water instrument: Rain in SA2.
- Labor instrument: 2005 population share in SA2 working in *other* agricultural sectors.

| Sector    | $lpha_W$ | $lpha_L$ |
|-----------|----------|----------|
| Annual    | 0.248*** | 0.302*   |
|           | (0.053)  | (0.176)  |
| Dairy     | 0.359*** | 0.296*** |
|           | (0.100)  | (0.108)  |
| Perennial | 0.842*** | 0.377    |
|           | (0.122)  | (0.264)  |
|           |          |          |

# Estimated Agricultural Marginal WTP for Water



Note: Using  $\frac{\partial Y}{\partial W}$  and the change in evapotranspiration we can do a first order approximation of the realized effect on output-abstracting away from any re-shuffling of other inputs or endogenous productivity growth.

### Roadmap

- 1. Water in Australia
- 2. Data and Descriptive Statistics
- 3. Local Economic Effects: Event Studies
- 4. Communal Value of Water: Residential Choice
- 5. Market Value of Water: Agricultural Production
- 6. Market Design and Counterfactuals

# Framework: Policy? Market Design? Nothing?

#### - Efficiency:

- Let the market do its thing (Arrow and Debreu 1954, Coase 1960, Stavins 1995).
- **But**, if private WTP is negatively correlated with community WTP and sufficient heterogeneity, scope for improving efficiency (Slattery 2025, Kline and Moretti 2014).

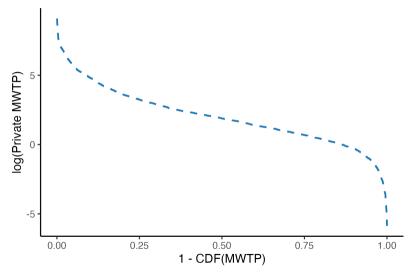
#### - Equity:

- Let the market do its thing and redistribute (Atkinson and Stiglitz 1976).
- **But**, if WTP provides more information about welfare weights or marginal utility of income, distortions may be desired in goods markets (Doligalski et al. 2025).

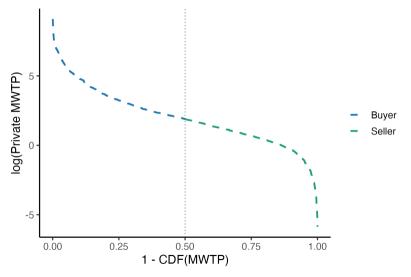
#### - Political Feasibility:

- People care about equity.
- Either don't have tax lever OR indirect redistribution is not salient to impacted parties.
- Mechanisms that generate **Pareto-improving outcomes** would be ideal.
- **Today:** Explore Pareto gains given joint distribution of private and social WTP.

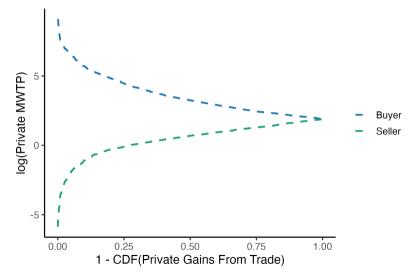
### Correlation between trade, agricultural value, and local WTP


- Predict post-2007 change in water with SA1 farmer WTP and community WTP.

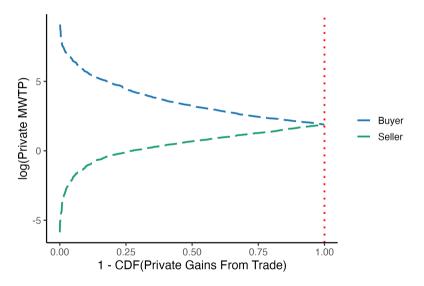
$$\Delta W_l = \underbrace{\beta_F \log(P_l^{MWTP})}_{\text{private wtp}} + \underbrace{\beta_C \log(C_l^{MWTP})}_{\text{local wtp}} + \underbrace{\phi_{d(l)} + \eta_{SA2(l)}}_{\text{regional FEs}} + \varepsilon_l$$


- Private WTP predicts trade while community WTP does not.
- Private and community incentives are negatively correlated.

| Dependent Var.:    | $\frac{W^{Post}}{W^{Pre}}$ | $W^{Post} - W^{Pre} > 0$ | log(Community WTP) |
|--------------------|----------------------------|--------------------------|--------------------|
|                    | ÖLS                        | Logit                    |                    |
| log(Private WTP)   | 0.008                      | 0.339                    | -0.051             |
|                    | (0.106)                    | (0.014)                  | (0.009)            |
| log(Community WTP) | -0.002                     | -0.263                   |                    |
|                    | (0.002)                    | (0.091)                  |                    |
| Observations       | 2,059                      | 1,552                    | 2,059              |

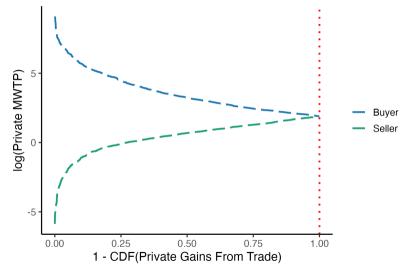

 Distribution of Private MWTP for water




- Distribution of Private MWTP for water
- Identify buyers and sellers

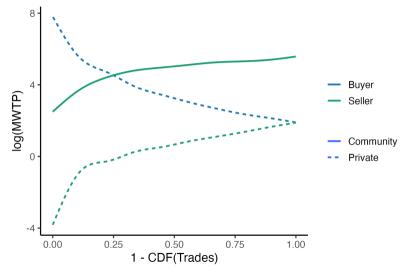


- Distribution of Private MWTP for water
- Identify buyers and sellers
- Order pairs by private gains from trade



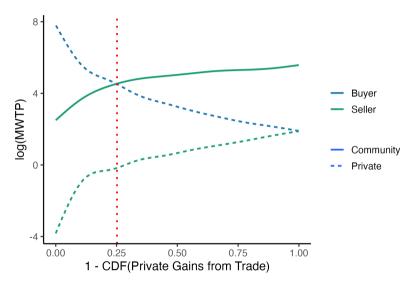

- Distribution of Private MWTP for water
- Identify buyers and sellers
- Order pairs by private gains from trade
- Achieve 100% of private gainful trades



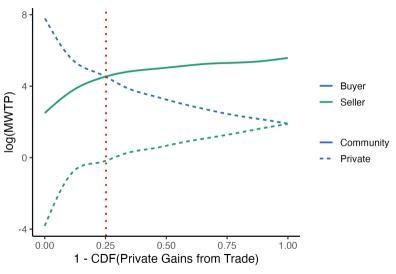

# Status quo thinking: Private buyer is reponsible for damages

 Keep this pairing of buyers and sellers




# Status quo thinking: Private buyer is reponsible for damages

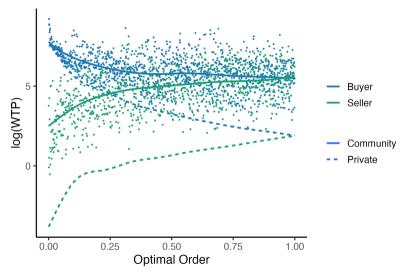
- Keep this pairing of buyers and sellers
- Incorporate seller community value
- Private buyer responsible for transfer to community



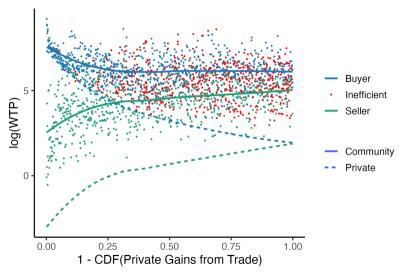

# Status quo thinking: Private buyer is reponsible for damages

- Keep this pairing of buyers and sellers
- Incorporate seller community value
- Private buyer responsible for transfer to community
- 25% of gainful trades

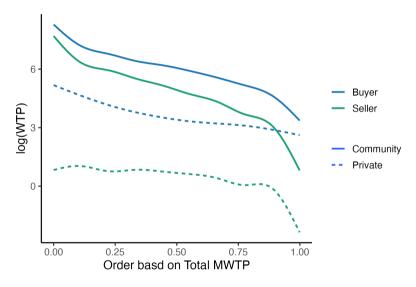



Myopic consideration of costs/benefits




- Myopic consideration of costs/benefits
- Including buying community shows more gains




- Myopic consideration of costs/benefits
- Including buying community shows more gains
- Plot masks heterogeneiety



- Myopic consideration of costs/benefits
- Including buying community shows more gains
- Plot masks heterogeneiety
- 38% are myopically inefficient



- Myopic consideration of costs/benefits
- Including buying community shows more gains
- Plot masks heterogeneiety
- 38% are myopically inefficient
- Matching buyers/sellers

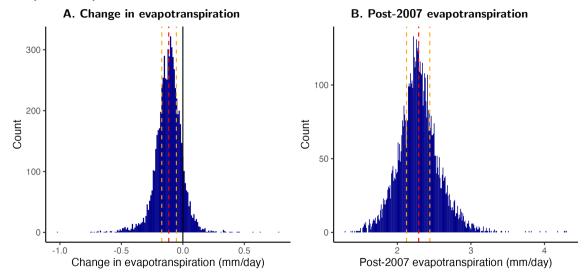


#### Conclusion and Next Steps

- Estimate significant local spillovers from water trade in MDB.
- Average hedonic local WTP for water around 25% of typical market price.
- Achieving widespread Pareto transfers requires incorporation of buying community WTP.

### Conclusion and Next Steps

- Estimate significant local spillovers from water trade in MDB.
- Average hedonic local WTP for water around 25% of typical market price.
- Achieving widespread Pareto transfers requires incorporation of buying community WTP.

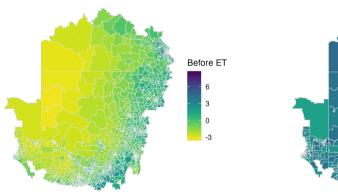

#### Next Steps:

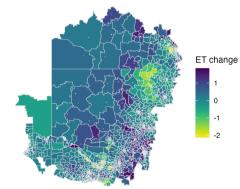
- How do we want to improve production model?
- How hard should we pursue actual trade data?
- How GE do we want to be?
- Where do we want to sit on the efficiency, equity, vs. political design question?





### Evapotranspiration Distribution (Back)



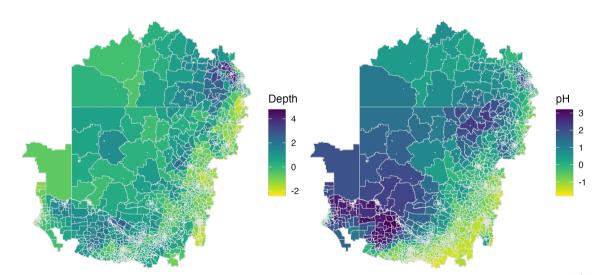


Note: Orange dashed lines are the interquartile range. Red dashed line is the mean.

# Evapotranspiration Geography (Back)

A. Pre-2007 evapotranspiration (mm/day)

#### B. Change in evapotranspiration (mm/day)






Note: Evapotranspiration data from satellite images. Averages residualize year and month means by SA1.

# Soil Characteristic Geography (Back)

A. Average soil depth (normalized)

B. Average soil pH (normalized)



# IV First-Stage Back

Table: First-Stage IV

| Dependent Variable:<br>Model:                                             | $change\_per\_land \ (1)$                                              |
|---------------------------------------------------------------------------|------------------------------------------------------------------------|
| $egin{aligned} V_{ariables}\ pH \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$      | -0.0754***<br>(0.0238)<br>0.0369***<br>(0.0123)<br>-0.0408<br>(0.0581) |
| Fixed-effects<br>water_id                                                 | Yes                                                                    |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup> | 6,541<br>0.10678<br>0.01463                                            |

Clustered (SA2\_CODE21) standard-errors in parentheses Signif. Codes: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1

# Table: Income Event-Study (Back)

Table: Changes in income by change in ET (post 2007)

| Dependent Variables:                                                                            | log(inc_96)                           | log(inc_01)                           | log(inc_11)                            | log(inc_16)                           | log(inc_21)                             | pooled                                  |
|-------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|
| Model:                                                                                          | (1)                                   | (2)                                   | (3)                                    | (4)                                   | (5)                                     | (6)                                     |
| Variables change_per_land                                                                       | -0.0539                               | 0.0095                                | 0.3245***                              | 0.1569**                              | 0.3033***                               | 0.2652***                               |
|                                                                                                 | (0.0902)                              | (0.0845)                              | (0.1068)                               | (0.0759)                              | (0.1010)                                | (0.0504)                                |
| Fixed-effects<br>water_id<br>year-water_id                                                      | Yes                                   | Yes                                   | Yes                                    | Yes                                   | Yes                                     | Yes                                     |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 5,307<br>0.05006<br>0.01032<br>56.796 | 5,445<br>0.03156<br>0.00317<br>56.672 | 5,020<br>0.07381<br>-0.06126<br>48.586 | 5,562<br>0.07625<br>0.01123<br>51.586 | 5,618<br>-0.02261<br>-0.08025<br>49.859 | 16,200<br>0.28836<br>-0.04147<br>149.00 |

# Table: Rent Event-Study (Back)

Table: Changes in rent by change in ET (post 2007)

| Dependent Variables:                                                                            | log(rent_96)                          | log(rent_01)                           | log(rent_11)                            | log(rent_16)                            | log(rent_21)                            | pooled                                  |
|-------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Model:                                                                                          | (1)                                   | (2)                                    | (3)                                     | (4)                                     | (5)                                     | (6)                                     |
| Variables change_per_land                                                                       | 0.0569                                | -0.0880                                | 0.1996                                  | 0.4270***                               | 0.5076***                               | 0.3982***                               |
|                                                                                                 | (0.1760)                              | (0.2187)                               | (0.1655)                                | (0.1534)                                | (0.1944)                                | (0.0929)                                |
| Fixed-effects<br>water_id<br>year-water_id                                                      | Yes                                   | Yes                                    | Yes                                     | Yes                                     | Yes                                     | Yes                                     |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 5,330<br>0.15156<br>0.00065<br>56.982 | 5,426<br>0.12373<br>-0.01476<br>56.473 | 4,666<br>-0.00623<br>-0.01960<br>47.038 | 5,243<br>-0.11257<br>-0.14639<br>50.746 | 5,542<br>-0.05145<br>-0.13231<br>52.324 | 15,451<br>0.12481<br>-0.09419<br>149.05 |

# Table: Mortgage Event-Study (Back)

Table: Changes in mortgage by change in ET (post 2007)

| Dependent Variables:                                                                            | log(mtg_96)                            | log(mtg_01)                            | log(mtg_11)                            | log(mtg_16)                             | log(mtg_21)                             | pooled                                   |
|-------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|
| Model:                                                                                          | (1)                                    | (2)                                    | (3)                                    | (4)                                     | (5)                                     | (6)                                      |
| Variables change_per_land                                                                       | -0.0632                                | -0.0456                                | 0.2980***                              | 0.3320***                               | 0.6711***                               | 0.4386***                                |
|                                                                                                 | (0.1500)                               | (0.1328)                               | (0.1070)                               | (0.1091)                                | (0.1393)                                | (0.0671)                                 |
| Fixed-effects<br>water_id<br>year-water_id                                                      | Yes                                    | Yes                                    | Yes                                    | Yes                                     | Yes                                     | Yes                                      |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 5,284<br>0.16270<br>-0.00418<br>56.447 | 5,411<br>0.14579<br>-0.00248<br>56.655 | 4,923<br>0.00727<br>-0.05021<br>49.580 | 5,434<br>-0.04168<br>-0.10969<br>49.629 | 5,494<br>-0.26304<br>-0.37058<br>50.236 | 15,851<br>-0.07315<br>-0.14816<br>148.69 |

# Table: Ag Wages Event Study (Back)

Table: Changes in Ag. Wages by change in ET (post 2007)

| Dependent Variables:<br>Model:                                                                  | $\log(ag\_income\_2011) \atop (1)$      | log(ag_income_2016) (2)               | log(ag_income_2021)<br>(3)             | pooled<br>(4)                          |
|-------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|
| Variables<br>change_per_land                                                                    | 0.2262**<br>(0.0958)                    | 0.0384<br>(0.1141)                    | 0.1594*<br>(0.0932)                    | 0.1429**<br>(0.0668)                   |
| Fixed-effects<br>water_id<br>water_id-year                                                      | Yes                                     | Yes                                   | Yes                                    | Yes                                    |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 2,573<br>-0.01329<br>-0.02592<br>70.466 | 2,498<br>0.02253<br>0.00056<br>67.116 | 2,556<br>0.02105<br>-0.00193<br>74.117 | 7,627<br>0.15081<br>-0.00516<br>211.70 |

# Table: Ag Employment Event Study (Back)

Table: Changes in Ag. Jobs by change in ET (post 2007)

| Dependent Variables:<br>Model:                                                                  | $\log(\text{total\_ag\_jobs}) \ (1)$   | log(total_ag_jobs) (2)                  | log(total_ag_jobs) (3)                  | pooled<br>(4)                           |
|-------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Variables<br>change_per_land                                                                    | 0.4684<br>(0.2972)                     | 0.7622***<br>(0.2914)                   | 0.4868*<br>(0.2912)                     | 0.5695***<br>(0.1794)                   |
| Fixed-effects<br>water_id<br>water_id-year                                                      | Yes                                    | Yes                                     | Yes                                     | Yes                                     |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 2,585<br>0.02467<br>-0.03088<br>70.429 | 2,506<br>-0.03625<br>-0.07903<br>67.387 | 2,561<br>-0.00993<br>-0.03662<br>74.300 | 7,652<br>-0.00416<br>-0.04637<br>212.10 |

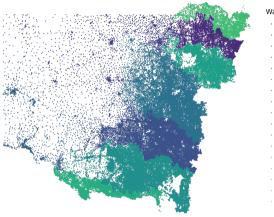
#### Table: Political Effects (Back)

Table: Changes in ALP VoteShare by change in ET (post reform)

| Dependent Variables:<br>Model:                                                                  | log(alp_share_07) (1)                | log(alp_share_10) (2)                | log(alp_share_13) (3)                | log(alp_share_16)<br>(4)              | log(alp_share_19) (5)                 | pooled<br>(6)                          |
|-------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|
| Variables<br>change_per_land                                                                    | -0.3490*<br>(0.1943)                 | -0.1668<br>(0.2985)                  | -0.4217<br>(0.4086)                  | -0.6092<br>(0.4176)                   | -0.7041<br>(0.4503)                   | -0.4502**<br>(0.2155)                  |
| Fixed-effects<br>water_id<br>year-water_id                                                      | Yes                                  | Yes                                  | Yes                                  | Yes                                   | Yes                                   | Yes                                    |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 293<br>0.17335<br>-0.50607<br>7.3103 | 293<br>0.38238<br>-0.10315<br>7.3103 | 293<br>0.15083<br>-0.32811<br>7.3103 | 293<br>-0.10766<br>-0.72380<br>7.3103 | 293<br>-0.11647<br>-0.73629<br>7.3103 | 1,465<br>0.16056<br>-0.44760<br>33.693 |

# Table: Population Event-Study (Back)

Table: Changes in population by change in ET (post 2007)

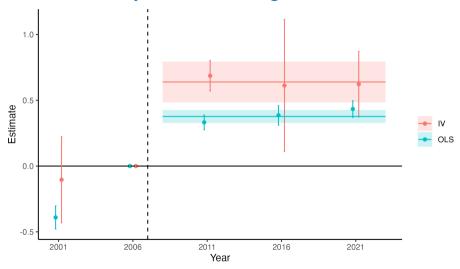

| Dependent Variables:                                                                            | log(pop_1991)                          | log(pop_1996)                         | log(pop2001)                          | log(pop_2011)                          | log(pop_2016)                          | log(pop_2021)                           | pooled                                 |
|-------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|
| Model:                                                                                          | (1)                                    | (2)                                   | (3)                                   | (4)                                    | (5)                                    | (6)                                     | (7)                                    |
| Variables change_per_land                                                                       | 0.0207                                 | -0.0158                               | -0.0908                               | 0.2194                                 | 0.3115                                 | 0.5663**                                | 0.3552***                              |
|                                                                                                 | (0.1802)                               | (0.0902)                              | (0.3168)                              | (0.2389)                               | (0.2309)                               | (0.2241)                                | (0.1333)                               |
| Fixed-effects<br>water_id<br>year-water_id                                                      | Yes                                    | Yes                                   | Yes                                   | Yes                                    | Yes                                    | Yes                                     | Yes                                    |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 4,289<br>0.01929<br>-0.00240<br>60.753 | 4,289<br>0.02945<br>0.00315<br>60.753 | 4,289<br>0.05563<br>0.00322<br>60.753 | 4,289<br>0.04838<br>-0.01753<br>60.753 | 4,289<br>0.03411<br>-0.02884<br>60.753 | 4,289<br>-0.03579<br>-0.08842<br>60.753 | 12,867<br>0.07674<br>0.01897<br>183.01 |

### Table: Deaths of Despair Back

Table: Changes in suicide rate by change in ET (post 2007)

| Dependent Variables                                                                             | : asinh(suicide_0812)                 | asinh(suicide_1014)                   | asinh(suicide_1115)                   | asinh(suicide_1418)                   | pooled                                |
|-------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Model:                                                                                          | (1)                                   | (2)                                   | (3)                                   | (4)                                   | (5)                                   |
| Variables change_per_land                                                                       | -2.927                                | -4.048                                | -4.026                                | -3.656                                | -3.798*                               |
|                                                                                                 | (3.205)                               | (2.734)                               | (2.696)                               | (2.276)                               | (2.190)                               |
| Fixed-effects<br>water_id<br>year-water_id                                                      | Yes                                   | Yes                                   | Yes                                   | Yes                                   | Yes                                   |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 162<br>-0.08098<br>-0.30249<br>3.1957 | 196<br>-0.33579<br>-0.65641<br>6.4595 | 196<br>-0.30813<br>-0.62742<br>6.4595 | 196<br>-0.14285<br>-0.55041<br>6.4595 | 750<br>-0.23036<br>-0.56530<br>19.864 |

#### Resale Data in NSW (Back)




#### Water district

- Australian Capital T
  - Broken
- Gwydir
- · Intersecting Streams
- Lachlan
- Lower Darling
- Macquarie-Castlereag
- Moonie
- Murrumbidgee
- Namo
- New South Wales Murr
- NSW Border Rivers
- Ovens
- Queensland Border Ri
- South Australian Non
- Victorian Murray
- Wimmera-Mallee (Surf

Notes: 1,290,017 transactions (with price) in MDB portion of New South Wales from 1995-2024. This contains 1/3 of the total population of MDB as of 2006.

### Home Prices Event-Study: IV and OLS Figure (Back)



Notes: Effect of permanent increase in ET/hectare on home resales in NSW.

# Table: Home Prices Event-Study (Back)

Table: Long run changes in property sale prices

| Dependent Variable:<br>Model:                                                                   | Pooled IV                                | Poolied OLS                   | Placebo 2001                             | 2011                                      | 2016                                     | 2021                                     |
|-------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| Variables<br>change                                                                             | 0.6393***<br>(0.0787)                    | 0.3770***<br>(0.0250)         | 0.1042<br>(0.1671)                       | 0.6866***<br>(0.0589)                     | 0.6124**<br>(0.2559)                     | 0.6224***<br>(0.1267)                    |
| Fixed-effects<br>area_type<br>water_id-year_bunch<br>property_id                                | Yes<br>Yes<br>Yes                        | Yes<br>Yes<br>Yes             | Yes<br>Yes                               | Yes<br>Yes<br>Yes                         | Yes<br>Yes<br>Yes                        | Yes<br>Yes<br>Yes                        |
| Fit statistics<br>Observations<br>R <sup>2</sup><br>Within R <sup>2</sup><br>F-test (1st stage) | 310,349<br>0.83775<br>0.00422<br>7,436.9 | 310,349<br>0.83840<br>0.00819 | 109,267<br>0.89690<br>0.00247<br>1,914.2 | 164,272<br>0.87776<br>-0.00093<br>4,435.8 | 167,050<br>0.88207<br>0.00455<br>2,418.6 | 174,465<br>0.89459<br>0.00654<br>3,122.3 |

Clustered (SA1\_CODE21) standard-errors in parentheses Signif. Codes: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1